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Abstract
The Compton scattering cross-section in strong magnetic fields in the laboratory
frame is derived, which gives Herold’s result in the electron rest frame but
cannot be recovered vice versa from the latter by relativistic transformations.
For the scattering of a low-frequency photon with electrons, this cross-section
has a simple form which can also be reduced to Herold’s nonrelativistic limit
but cannot be recovered either from the latter. Compared with previous works,
this cross-section is directly applicable in astrophysical calculations for both
relativistic and nonrelativistic cases and may lead to some revisions to past
astrophysical calculations based upon Herold’s expressions.

PACS numbers: 13.60.Fz, 03.70.+k, 11.20.Dj

Since Herold’s study of the Compton scattering in strong magnetic fields in the electron
rest frame (ERF) [1], his expression of cross-section has been widely used in astrophysical
calculations, because it is believed that the inverse Compton scattering in strong magnetic fields
near the surfaces of neutron stars is one of the possible mechanisms responsible for x-ray and
γ -ray emissions. However, in actual calculations the cross-section in the laboratory frame (LF)
is required. The difficulty of obtaining an LF version of Herold’s cross-section in the ERF is
due to the fact that the QED processes in an external magnetic field are relativistic invariant only
in the direction of the field and, therefore, no exact relativistic transformations are available, as
will be justified later in the text, to recover the full expression of cross section in the LF from
Herold’s expression. As a fact, up to now, most calculations were based on the relativistic
transformation of Herold’s nonrelativistic approximation, or of Dermer’s expression [2, 3],
similar to the treatment in the Thomson limit without external magnetic fields [4]. This kind of
approximation is valid only for the scattering of a low-frequency photon with nonrelativistic
electrons. In this paper the Compton scattering cross-section of a photon with relativistic
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electrons in ultra-strong magnetic fields is calculated but it is still in the ERF [5]. This paper
aims at a derivation of an exact LF version of Herold’s full expression of cross-section in the
ERF.

Following the perturbation approach in the incoming interaction picture [6], a general
expression is obtained in the LF for the cross-section of the Compton scattering in strong
magnetic fields, which yields exactly Herold’s result in the ERF, as it should be. This cross-
section has a simple form for the scattering of a low-frequency photon with electrons, which
can be reduced again to Herold’s nonrelativistic limit. The advantage of this cross-section is
that it can be used directly in astrophysical calculations for both relativistic and nonrelativistic
cases.

1. Cross-section in laboratory frame

Charged particles on higher Landau levels have a very short lifetime τ due to the cyclotron
radiation in strong magnetic fields [7], τ � 10−15 s. It is therefore reasonable to assume
that electrons either before or after the magnetic scattering should be on the ground Landau
level. That is to say an electron can only occupy a higher Landau level in its intermediate
states. Taking into account the fact that the ground Landau level is not degenerate due to the
spinor u1,0(x1, k) = 0 according to (A.4) in the appendix, the initial and final states of an
electron–photon scattering system can be represented by

|i, ti〉 = c+
0 (pi , ti)a

+
λi
(ki , ti)|0〉 (1)

|f, tf 〉 = c+
0 (pf , tf )a

+
λf
(kf , tf )|0〉 (2)

where, as shown in (A.12), c+
0 = c+

2,0 is the electron creation operator, a+
λ is the photon creation

operator and pi(f ) denotes the incident (outgoing) electron momentum. We stress here that
the operators in these two expressions are Heisenberg ones, not the free ones, meaning that
interactions have been considered. The scattering matrix can be generally expressed by

Sf i = lim
ti→−∞, tf→∞〈0|T [c0(pf , tf )aλf (kf , tf )c

+
0 (pi , ti)a

+
λi
(ki , ti)]|0〉. (3)

Introducing the incoming interaction picture and making perturbation expansions [6], one then
obtains under the Born approximation

Sf i = lim
ti→−∞, tf→∞ e

2
∫

d4x1 d4x2 〈0|T c0(pf , tf )ψ̄(x1)|0〉γµ〈0|T ψ(x1)ψ̄(x2)|0〉γν
×[〈0|T aλf (kf , tf )Aµ(x1)|0〉〈0|T a+

λi
(ki , ti)Aν(x2)|0〉

+〈0|T aλf (kf , tf )Aν(x2)|0〉〈0|T a+
λi
(ki , ti)Aµ(x1)|0〉]

×〈0|T ψ(x2)c
+
0 (pi , ti)|0〉 (4)

where operators are all the ‘in’ operators, i.e., the free ones, but, for simplification, we have
omitted here the label ‘in’. For example, the free Feynman propagator should be written as
〈0|T ψin(x)ψ̄in(y)|0〉, but now it is denoted by 〈0|T ψ(x)ψ̄(y)|0〉, which is given in (A.17)
and (A.18). According to (A.2) and (A.8), the incident (outgoing) electron momentum can
be expressed as pi(f ) = (0, ai(f ), pi(f )), meaning the incident (outgoing) electron momentum
along the direction of the magnetic field (taken as the z direction) is pi(f ) and the centre of the
Landau orbit is −λ2ai(f ), as shown in the harmonic oscillator wavefunction (A.6).

In this paper we adopt the normalization scheme in a box with a volume V = L3. After a
quite lengthy but straightforward calculation typical in QED and by neglecting an unimportant
phase factor, the scattering amplitude can be derived as (see section 2 in appendix)
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Sf i = (2π)3

VL2

e2

2
√
ωiωf

[
(Ei +m)(Ef +m)

4EiEf

] 1
2

exp

[
−λ

2

4
(ω2
i sin2 θi + ω2

f sin2 θf )

]

× exp

[
−iλ2ai(kix − kf x)− i

λ2

2
(kixkiy + kf xkfy)

]
X

×δ(Ei + ωi − Ef − ωf )δ(pi + ki cos θi − pf − kf cos θf )

×δ(ai + kiy − af − kfy) (5)

where ωi and ωf are frequencies of the incident and scattered photons, Ei and Ef represent
the energies of the incident and scattered electrons, respectively, θi (θf ) denotes the angle
between the incoming (outgoing) photon and the magnetic field and X is a rather complicated
expression as follows:

X =
∞∑
n=0

1

n!

[(
λ2k−

i k
+
f

2

)n
exp(iλ2kiykf x)

(
X1

(Ei + ωi)2 − E2
i,n+1

+
X2

(Ei + ωi)2 − E2
i,n

)

+

(
λ2k+

i k
−
f

2

)n
exp(iλ2kixkfy)

(
X′

1

(Ei − ωf )2 − E2
f,n+1

+
X′

2

(Ei − ωf )2 − E2
f,n

)]

(6)

in which k±
i = kix ± ikiy, k

±
f = kf x ± ikfy ,

E2
i,n = m2 + (pi + ωi cos θi)

2 + 2neB (7)

E2
f,n = m2 + (pi − ωf cos θf )

2 + 2neB (8)

and Xi,X′
i , i = 1, 2, are given by

X1 =
[
(Ei + ωi +m)pi(pi + ωi cos θi − ωf cos θf )

(Ei +m)(Ef +m)
+ (Ei + ωi −m)

]
e−i e

+
f

+

(
pi

Ei +m
+
pi + ωi cos θi − ωf cos θf

Ef +m

)

×[k+
f ef ze

−
i + k−

i eize
+
f − (pi + ωi cos θi)e

+
f e

−
i ] (9)

X2 =
[
(Ei + ωi +m)pi(pi + ωi cos θi − ωf cos θf )

(Ef +m)(Ei +m)

+

(
pi

Ei +m
+
pi + ωi cos θi − ωf cos θf

Ef +m

)

×(pi + ωi cos θi) + (Ei + ωi −m)
]
ef zeiz (10)

X′
1 =

[
(Ei − ωf +m)pi(pi + ωi cos θi − ωf cos θf )

(Ef +m)(Ei +m)
+ (Ei − ωf −m)

]
e+
i e

−
f

−
(

pi

Ei +m
+
pi + ωi cos θi − ωf cos θf

Ef +m

)

×[k+
i eize

−
f + k−

f ef ze
+
i + (pi − ωf cos θf )e

+
i e

−
f ] (11)

X′
2 =

[
(Ei − ωf +m)pi(pi + ωi cos θi − ωf cos θf )

(Ef +m)(Ei +m)
+ (Ei − ωf −m)

+

(
pi

Ei +m
+
pi + ωi cos θi − ωf cos θf

Ef +m

)
(pi − ωf cos θf )

]
eizef z (12)
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where ei and ef are polarizations of the incident and scattered photons and e±i = eix ±
ieiy, e

±
f = ef x ± iefy . The conservation of energy and momentum along the z direction, i.e.

Ef = Ei + ωi − ωf and pf + kf cos θf = pi + ki cos θi , leads to

ωf = 1

sin2 θf
{Ei − pi cos θf + ωi(1 − cos θi cos θf )− [(Ei − pi cos θf )

2

+2ωi(Ei cos θf − pi)(cos θf − cos θi) + ω2
i (cos θf − cos θi)

2]
1
2 }. (13)

From the scattering amplitude (5) and following the routine procedure, i.e. summing over
the final states of the scattered photon and electron, kf , af , pf , to obtain the rate of scattering
probability which is then divided by the relative incident flux density, (Ei − pi cos θi)/VEi ,
the differential cross-section can thus be obtained:

dσ

d'f
= r2

0

4

ωf

ωi

m2

(Ei +m)(Ef +m)

exp[− λ2

2 (ω
2
i sin2 θi + ω2

f sin2 θf )]|Y |2
(Ei − pi cos θi)[Ef − (pi + ωi cos θi − ωf cos θf ) cos θf ]

(14)

in which r0 is the classical electron radius and Y = Y1 + Y2, which are given by

Y1 =
∞∑
n=0

1

n!

(
λ2ωiωf sin θi sin θf

2
e−i(φi−φf )

)n
exp(iλ2ωiωf sin θi sin θf cosφf sin φi)

×
[

[A− B(pi + ωi cos θi)]e+
f e

−
i + B(k+

f ef ze
−
i + k−

i eize
+
f ]

(Ei + ωi)2 − E2
i,n+1

+
[A + B(pi + ωi cos θi)]ef zeiz

(Ei + ωi)2 − E2
i,n

]
(15)

Y2 =
∞∑
n=0

1

n!

(
λ2ωiωf sin θi sin θf

2
ei(φi−φf )

)n
exp(iλ2ωiωf sin θi sin θf sin φf cosφi)

×
[

[A′ − B(pi − ωf cos θf )]e
−
f e

+
i − B(k−

f ef ze
+
i + k+

i eize
−
f )

(Ei − ωf )2 − E2
f,n+1

+
[A′ + B(pi − ωf cos θf )]ef zeiz

(Ei − ωf )2 − E2
f,n

]
. (16)

In the above two expressions the coefficients A, A′, B are defined by

A = (Ei + ωi +m)pipf + (Ei + ωi −m)(Ei +m)(Ef +m) (17)

A′ = (Ei − ωf +m)pipf + (Ei − ωf −m)(Ei +m)(Ef +m) (18)

B = pi(Ef +m) + pf (Ei +m) (19)

respectively. In the ERF pi = 0, (14) is reduced to Herold’s expression, as expected. However
the expression (14) cannot be derived vice versa by relativistic transformations from the latter.
For example, the photon frequencies in (14) are not all the Doppler ones as they would be
according to relativistic transformation rules, and the terms in (14) multiplied by pi like
those in (17)–(19) cannot be recovered, since one obtains nothing from zero by relativistic
transformations.

To simplify calculations, we choose the coordinate system withφi = 0. Denotingφf = φ,
we can write

ki = ωi(sin θi, 0, cos θi) kf = ωf (sin θf cosφ, sin θf sin φ, cosφ). (20)
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Taking into account the fact that photons have only two transversal polarizations, the
polarizations of the incident and scattered photons can be chosen as

e
(1)
i = (− cos θi, 0, sin θi) e

(2)
i = (0, −1, 0) (21)

e
(1)
f = (− cos θf cosφ, − cos θf sin φ, sin θf ) e

(2)
f = (sin φ, − cosφ, 0). (22)

The above choice is not unique but is convenient for calculations. Now we define reduced
quantities

+i = ωi

m
+f = ωf

m
+0 = ω0

m
(23)

where ω0 = eB/m is the cyclotron frequency. We denote the reduced Doppler frequencies by

+ir = γ (1 − β cos θi)+i +f r = γ (1 − β cos θf )+f . (24)

Averaging over the polarizations of incident photons and summing over those ones of scattered
photons, the total differential cross-section is obtained:

dσ

d'f
= r2

0

8

+f

+ir(1 + γ )(1 + γ ++i −+f )

× exp[− Bc
2B (+

2
f sin2 θf ++2

i sin2 θi)]|Y ′|2
[γ (1 − β cos θf ) ++i(1 − cos θi cos θf )−+f sin2 θf ]

(25)

in which Bc = m2

e
≈ 4.414 × 109 T is the critical magnetic field and |Y ′|2 is given by

|Y ′|2 = |Y ′(1i → 1f )|2 + |Y ′(1i → 2f )|2 + |Y ′(2i → 1f )|2 + |Y ′(2i → 2f )|2 (26)

whereλi → λf , λi(f ) = 1i(f ), 2i(f ), represents the scattering of a photon from the polarization
λi to λf , and

Y ′(1i → 1f ) = [(A− cos θf − B1) cos θi − B2 cos θf ]
∞∑
n=0

1

n!
ζ nSi,n+1e[i(n+1)φ]

−[(A′
− cos θf + B1) cos θi + B2 cos θf ]

∞∑
n=0

1

n!
ζ nSf,n+1e−i[(n+1)φ−η]

+ sin θi sin θf

[
A+

∞∑
n=0

1

n!
ζ nSi,ne

inφ − A′
+

∞∑
n=0

1

n!
ζ nSf,ne

−i(nφ−η)
]

(27)

where

A± = a ± b(βγ ++i cos θi) A′
± = a′ ± b(βγ −+f cos θf ) (28)

B1 = b+f sin2 θf B2 = b+i sin2 θi (29)

in which

a = βγ (1 + γ ++i)(βγ ++i cos θi −+f cos θf ) + (γ − 1 ++i)(1 + γ )(1 + γ ++i −+f )
a′ =βγ (1 + γ −+f )(βγ ++i cos θi −+f cos θf ) + (γ − 1 −+f )(1 + γ )(1 + γ ++i −+f )
b = βγ (1 + γ ++i −+f ) + (βγ ++i cos θi −+f cos θf )(1 + γ )

and

η = ζ sin φ ζ = Bc

2B
+i+f sin θi sin θf

Si,n = 1

2(+ir − n+0) ++2
i sin2 θi

Sf,n = 1

2(+f r + n+0)−+2
f sin2 θf

.
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Figure 1. The total cross-section in the ERF (γ = 1). The incident photon energy is in units of
the electron rest energy (m) and the magnetic field B is in units of Bc. The total cross-section is
in Thomson units (σT ). The solid curve is plotted according to the full expression (25) where the
exact summations in (27), (30), (31) and (32) have been performed numerically. It is seen that
apparent resonances occur at higher Landau levels. The dotted curve results from the n = 0 terms
(i.e., summing up to the first Landau level) in (27), (30), (31) and (32), which is valid for +i � 1.
The dashed curve corresponds to (34) and (35) together with the simplified expression (41). Since
the n = 0 approximation takes into account only the first Landau level, the resonances at higher
Landau levels are absent from the dotted (dashed) curve.

Other Y ′ are given by

Y ′(1i → 2f ) = i(A− cos θi − B2)

∞∑
n=0

1

n!
ζ nSi,n+1ei(n+1)φ

+i(A′
− cos θi + B2)

∞∑
n=0

1

n!
ζ nSf,n+1e−i(n+1)φ+iη (30)

Y ′(2i → 1f ) = −i(A− cos θf − B1)

∞∑
n=0

1

n!
ζ nSi,n+1ei(n+1)φ

−i(A′
− cos θf + B1)

∞∑
n=0

1

n!
ζ nSf,n+1e−i(n+1)φ+iη (31)

Y ′(2i → 2f ) = A−
∞∑
n=0

1

n!
ζ nSi,n+1ei(n+1)φ − A′

−
∞∑
n=0

1

n!
ζ nSf,n+1e−i(n+1)φ+iη. (32)

Now we are ready to carry out numerical calculations and the results are shown by solid curves
in figures 1–3 in whichB = 0.1Bc. The solid line in figure 1 is plotted for comparison with the
corresponding one of Herold and it is clear that they are identical. Figures 2 and 3 consider the
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Figure 2. Total cross-sections for different incident photon angles when the incident electron
energy is given (γ = 100). It is seen from solid curves, as compared with figure 1, that even the
resonance at the second Landau level is very weak in the LF. The smaller the incident photon angle,
the higher the incident photon energy required to reach a resonant scattering. The dotted curves
are plotted according the n = 0 approximation where the resonances at higher Landau levels are
absent. The deviation of dotted curves from solid ones for higher incident photon energies can be
viewed as a compensation for the absence of higher-order resonances in the approximation.

scattering of low-frequency photons with high-energy electrons. The solid curves in figures 2
and 3 show that the second-order resonance is very weak as compared with the first-order one.
This is understandable for the reason that the transition probability of a relativistic electron to
higher Landau levels by absorbing an incident photon should be obviously less then that to the
first Landau level. However this is not obvious in the ERF, because apparent resonance occurs
for higher Landau levels in the ERF as shown in figure 1. Figure 2 is to show the influence of
incident angles of photons over the cross-section for a given energy, while figure 3 considers
the effect of the energies of incident electrons on the cross-section for a given incident angle. It
is seen in figure 2 that a change in incident angles leads to a shift of resonance: the smaller the
incident angle, the higher the incident photon energy required to reach a resonant scattering.
This is understandable by physical intuitions that for a photon to be resonantly scattered by a
high-energy electron with nearly the speed of light its energy should be higher in the case of
smaller incident angles.

In astrophysics one is more interested in the inverse Compton scattering of a low-
energy photon gas with high-energy electrons in a strong magnetic field. When +i � 1
the summations in (27) and (30)–(32) converge rapidly and the n = 0 terms dominate the
contribution, which is verified by numerical results shown by dotted curves in figures 1–
3. It is seen that the deviation of dotted curves from solid ones for higher incident photon
energies can be considered as a compensation for the absence of higher-order resonances in
the approximation.
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Figure 3. Total cross-sections, with different incident photon energies when the incident photon
angle is fixed (θi = 60◦). It is seen that the higher the electron energy, the lower the photon energy
required to reach a resonant scattering. The solid curves originate from the full expression (25),
while the dotted curves correspond to the n = 0 approximation and have the same meaning as in
figure 2.

For further simplification, we integrate over the azimuthal angleφ and introduce the Bessel
functions

Jn(−ξ) = 1

2π

∫ 2π

0
dφ cos[nφ − ξ sin(φ)] n = 0, 1, 2 (33)

then the differential cross-section (25), summing up to n = 0, can be reduced to

dσ = σ(+i, θi, γ, θf ) sin θf dθf (34)

where

σ(+i, θi, γ, θf ) = πr2
0

4

+f

+ir(γ + 1)(1 + γ ++i −+f )

× exp(− Bc
2B+

2
f sin2 θf )Yr

[γ (1 − β cos θf ) ++i(1 − cos θi cos θf )−+f sin2 θf ]
(35)

with Yr given by

Yr = C1S
2
i,1 + C2S

2
f,1 + [(A+Si,0 − A′

+Sf,0)
2 + 2(1 − J0(ζ ))A+A

′
+Si,0Sf,0](sin θi sin θf )

2

+2[(A− cos θi − B2)(A
′
− cos θi + B2) + (A− cos θf − B1)

×(A′
− cos θf + B1)−D1D2

−A−A′
−]J2(−ξ)Si,1Sf,1 − 2[D1A

′
+Si,1Sf,0 +D2A+Si,0Sf,1]

× sin θi sin θf J1(−ξ) (36)
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Figure 4. The dashed curves are plotted according to (34), (35) and the simplified expression (41)
and are compared with solid curves according to the full expression (25), whereB = Bc, θi = 90◦.
The dashed curves, as well as the dashed curve in figure 1, show that the simplified form is
satisfactory under various physical conditions.

in which

D1 = (A− cos θf − B1) cos θi − B2 cos θf (37)

D2 = (A′
− cos θf + B1) cos θi + B2 cos θf (38)

and

C1 = D2
1 + (A− cos θi − B2)

2 + (A− cos θf − B1)
2 + A2

− (39)

C2 = D2
2 + (A′

− cos θi + B2)
2 + (A′

− cos θf + B1)
2 + A′2

−. (40)

Then expression (36) can be simplified to

Yr = C1S
2
i,1 + C2S

2
f,1 + [(A+Si,0 − A′

+Sf,0)]
2(sin θi sin θf )

2

+2(1 − J0(ζ ))A+A
′
+Si,0Sf,0](sin θi sin θf )

2 (41)

by noting that J1(−ξ) and J2(−ξ) are negligible for +i � 1. To justify this, numerical
calculations have been performed; these are shown by dashed curves in figures 1 and 4. We
find that the last term containing J0(ξ) in (41) is important for this approximation in the sector
of higher incident photon energies. It is worth pointing out that the approximation (41) can
also be justified by considering the nonrelativistic limit in the ERF (γ = 1, or β = 0). Under
the Thomson limit (+f � +i � 1) it is easy to seeA− = −A′

− � 4+i, B1 = B2 � 0, A+ =
−A′

+ � 4+i and J0(ξ) � 1; (35) becomes



6358 Yi Xu and Hong-Hua Xu

σ(+i, θi, θf )

πr2
0

= sin2 θi sin2 θf +
1

4
(1 + cos2 θi)(1 + cos2 θf )

[
+2
i

(+i −+0)2
+

+2
i

(+i ++0)2

]

(42)

which is just Herold’s nonrelativistic result, a well known expression widely used in
astrophysics. However (35) cannot be recovered vice versa from (42) by relativistic
transformations.

To conclude, we have derived the magnetic Compton scattering cross-section and its
simplified form in the LF, which can be reduced to Herold’s results in the ERF but cannot be
recovered vice versa from Herold’s expressions by relativistic transformations. This implies
that this cross-section may lead to some revisions to past astrophysical calculations based
upon (42), for example, the number and power spectra of scattered photons resulting from the
magnetic inverse Compton scattering of a photon gas with a relativistic electron beam which
are detectable for observers. In fact, based upon the simplified expressions (34), (35) and (41)
we have calculated the spectrum of the scattered photon number (i.e. the rate of the scattered
photon number per unit scattered photon energy and per unit volume versus the scattered
photon energy) resulting from the scattering of a thermal photon gas with a relativistic electron
beam, which is supposed to happen at the surface of a neuton star. It is found that there exists
a high-energy tail beyond each resonant scattering due to the presence of the last term in (41),
which is absent from the work of Daugherty and Harding (figure 9) where (42) was used
in Monte Carlo simulations [8]. As a consequence, the highest scattered photon energy we
calculated is much higher than that obtained by Daugherty and Harding. The details will be
given in a separate paper.

Appendix

A.1. Derivation of the magnetic Feynman propagator

We begin with the Dirac equation

[i �∂ − e �A(x)−m]ψ(x, t) = 0 (A.1)

in which e > 0 is assumed and the asymmetry gauge is taken, i.e. A(x) = (0, Bx1, 0). The
solution of (A.1) with positive energy is

ψ(+)s,n (x, t) = Nus,n(x1,p) exp[−iEn(p3)t + ip2x2 + ip3x3] s = 1, 2 (A.2)

where En indicates the Landau energy of an electron and N is a normalization constant

En(p3) = (m2 + p2
3 + 2neB)

1
2 N =

[
En(p3) +m

2En(p3)

] 1
2

. (A.3)

The spinors u1,n(x1,p), u2,n(x1,p) are given by

u1,n(x1,p) =




In−1(x1, p2)

0
p3

En(p3)+m
In−1(x1, p2)

i
√

2neB
En(p3)+m

In(x1, p2)


 (A.4)

u2,n(x1,p) =




0
In(x1, p2)

−i
√

2neB
En(p3)+m

In−1(x1, p2)

−p3

En(p3)+m
In(x1, p2)


 (A.5)
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in which In(x1, p2) is the harmonic oscillator wavefunction

In(x1, p2) = (λ√π2nn!)−
1
2 exp

[
−1

2

(x1

λ
+ λp2

)2
]
Hn

(x1

λ
+ λp2

)
(A.6)

obeying the orthogonal condition∫
dx1 In(x1, p2)Im(x1, p2) = δnm (A.7)

where λ−1 = √
eB. The solution of (A.1) with negative energy is

ψ(−)s,n (x) = Nvs,n(x1,p) exp[iEn(p3)t + ip2x2 + ip3x3] s = 1, 2 (A.8)

with the spinors v1,n(x1,p), v2,n(x1,p) given by

v1,n(x1,p) =




−p3

En(p3)+m
In−1(x1, p2)

−i
√

2neB
En(p3)+m

In(x1, p2)

In−1(x1, p2)

0


 (A.9)

v2,n(x1,p) =




i
√

2neB
En(p3)+m

In−1(x1, p2)

p3

En(p3)+m
In(x1, p2)

0
In(x1, p2)


 . (A.10)

It is obvious that the spinors us,n(x1,p), vs,n(x1,p), s = 1, 2 form a complete and
orthogonalized basis in the four-dimensional vector space. Therefore the Dirac field operators
can be expanded [9] as

ψ(x) =
∞∑
n=0

2∑
s=1

1

L

∑
p2, p3

[cs,n(p, t)us,n(x1,p) + d+
s,n(p, t)vs,n(x1,p)] exp(ip2x2 + ip3x3)

(A.11)

ψ+(x) =
∞∑
n=0

2∑
s=1

1

L

∑
p2, p3

[c+
s,n(p, t)u

+
s,n(x1,p) + ds,n(p, t)v

+
s,n(x1,p)] exp(−ip2x2 − ip3x3).

(A.12)

From the commutation relation

{ψα(x, t), ψ+
β (y, t)} = δαβδ3(x − y) (A.13)

the commutation relations between the annihilation and destruction operators can be derived
as

{cs,n(p1, t), c
+
r,m(p2, t)} = δsrδnmδp1 p2 (A.14)

{dsn(p1, t), d
+
rm(p2, t)} = δsrδnmδp1 p2 . (A.15)

The Feynman propagator of an electron is defined by

SF (x, y) = −i〈0|T ψ(x)ψ̄(y)|0〉. (A.16)

The substitution of (12) and (13) into above expression leads, after some algebra, to

SF (x, y) = 1

L2

∑
p2 p3

∫
dω

2π

∞∑
n=0

Sn(x1, y1,p)

ω2 − E2
n(p3) + iε

× exp[−iω(tx − ty) + ip2(x2 − y2) + ip3(x3 − y3)] (A.17)
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where Sn(x1, y1,p) ≡ Sn(x1, y1, p2, p3, ω) is defined by

Sn(x1, y1,p) =



(ω +m)In−1In−1 0 −p3In−1In−1 i

√
2neBIn−1In

0 (ω +m)InIn −i
√

2neBInIn−1 p3InIn

p3In−1In−1 −i
√

2neBIn−1In −(ω −m)In−1In−1 0

i
√

2neBInIn−1 −p3InIn 0 −(ω −m)InIn


 (A.18)

in which ImIn is the abbreviation for Im(x1, p2)In(y1, p2).

A.2. Calculation of the scattering amplitude

In this section we give a detailed calculation of the scattering amplitude (5). Taking into
account that tf → ∞, it is easy to see from (A.12)

〈0|T c0(pf , tf )ψ̄(r1, t)|0〉 = 〈0{c0(pf , tf ), ψ̄
(−)(r1, t)}〉

= 1

L
ū0(x1,pf ) exp(−iEf tf − ipf z1 − iaf y1 + iEf t1) (A.19)

where we have set u0 = u2 0, because u1 0 = 0 (I−1(x1, p2) = 0 by definition). Similarly we
have

〈0|T aλf (kf , tf )Aµ(r1, t)|0〉 = 1√
V

1√
2ωf

e
(λf )
µ exp(−iωf tf + iωf t1 − ikf · r1) (A.20)

〈0|T ψ(r2, t)c
+
0 (pi , ti)|0〉 = 1

L
u0(x2,pi ) exp(iEiti + ipiz2 + iaiy2 − iEit2) (A.21)

〈0|T a+
λi
(ki , ti)Aν(r2, t)|0〉 = 1√

V

1√
2ωi

e(λi )ν exp(iωiti − iωit2 + iki · r2) (A.22)

where e(λi ) = ei (e(λf ) = ef ) denotes the polarization of the incident (outgoing) photon.
Substituting the Feynman propagator (A.17) and the expressions (A.18) and (A.19) into (4)
we obtain after some algebra

Sf i = (2π)5

L2V

e2

2
√
ωiωf

∞∑
n=0

1

L2

∑
qyqz

∫
d4x1 d4x2

∫
dq0 ū0(x1,pf )

×
[
êf

Sn(x1, x2, q)

(Ei + ωi)2 − E2
n(qz) + iε

êi δ(ωf + Ef − q0)δ(q0 − ωi − Ei)
×δ(kiy + ai − qy)
×δ(qy − kfy − af )δ(qz − kf cos θf − pf )δ(ki cos θi + pi − qz)
× exp(−ikf xx1 + ikixx2)

+êi
Sn(x1, x2, q)

(Ei − ωf )2 − E2
n(qz) + iε

êf

×δ(ωf − Ei + q0)δ(Ef − ωi − q0)δ(kiy − af + qy)

×δ(ai − kfy − qy)δ(qz + ki cos θi − pf )δ(pi − kf cos θf − qz)
× exp(ikixx1 − ikf xx2)

]

×uo(x2,pi ) lim
ti→−∞, tf→∞ exp[−i(Ef + ωf )tf + i(Ei − ωi)ti] (A.23)

where êf = e(λf )µ γµ, êi = e(λi )µ γµ The phase factor at the end of (A.23) can be ignored, since
the cross-section ∼|Sf i |2. The spinors ū0(x1,pf ), u0(x2,pi ) can be expressed as

ū0(x1,pf ) =
[
Ef +m

2Ef

] 1
2

I0(x1, af )ūf (pf ) (A.24)
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uT0 (x2,pi ) =
[
Ei +m

2Ei

] 1
2

I0(x2, ai)ū
T
i (pi) (A.25)

where

ūf (pf ) = (
0 1 0 pf

Ef +m

)
(A.26)

uT
i (pi) = ( 0 1 0 −pi

Ei+m
) . (A.27)

With help of the integral formula [10]∫ ∞

−∞
dξ Hn(ξ) exp[−(ξ − α)2] = √

π(2α)n (A.28)

and with the substitutions kfy = af −qy and kiy = qy−ai which are implied in the δ functions
in the first term in (A.23), the integration

I1 =
∫

dx1 dx2 e−ikf xx1I0(x1, af )Sn(x1, x2, q)e
ikixx2I0(x2, ai) (A.29)

can be carried out to give

I1 = (λ3k+
f k

−
i )
(n−1)

2nn!
An exp

[
−λ

2

4
(k2
i sin2 θi + k2

f sin2 θf )

]

× exp[iλ2(af kf x + 1
2kf xkfy)− iλ2(aikix + 1

2kixkiy)] (A.30)

where k±
i = kix ± ikiy and k±

f = kf x ± ikfy and An is defined by

An =




2n(q0 +m) 0 −2nqz −2nk−
i

0 (q0 +m)λ2k+
f k

−
i −2nk+

f qzλ
2k+
f k

−
i

2nqz 2nk−
i −2n(q0 −m) 0

2nk+
f −qzλ2k+

f k
−
i 0 −(q0 −m)λ2k+

f k
−
i


 . (A.31)

Similarly the integration in the second term in (A.23)

I2 =
∫

dx1 dx2 eikixx1I0(x1, af )Sn(x1, x2, q)e
−ikf xx2I0(x2, ai) (A.32)

can be performed to yield

I2 = (λ3k+
f k

−
i )
(n−1)

2nn!
Bn exp

[
−λ

2

4
(k2
i sin2 θi + k2

f sin2 θf )

]

× exp[−iλ2(af kix − 1
2kixkiy) + iλ2(aikf x + 1

2kf xkfy)] (A.33)

with the matrix Bn given by

Bn =




2n(q0 +m) 0 −2nqz 2nk−
f

0 (q0 +m)λ2k−
f k

+
i 2nk+

i qzλ
2k−
f k

+
i

2nqz −2nk−
f −2n(q0 −m) 0

−2nk+
i −qzλ2k−

f k
+
i 0 −(q0 −m)λ2k−

f k
+
i


 . (A.34)

After the integrations over x1 and x2, two scalar matrix products, P1 = ūf (pf )êf Anêiui(pi)

and P2 = ūf (pf )êiBnêf ui(pi), are left, which can be easily calculated to give

P1 = 2n

[
(q0 +m)pipf

(Ef +m)(Ei +m)
+ (q0 −m)

]
e+
f e

−
i

+2n

[
pf

Ef +m
+

pi

Ei +m

]
(k−
i e

+
f eiz + k+

f ef ze
−
i − qze+

f e
−
i )

+λ2k+
f k

−
i

[
(q0 +m)pipf

(Ef +m)(Ei +m)
+ (q0 −m) +

qzpf

Ef +m
+
qzpi

Ei +m

]
ef zeiz (A.35)
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P2 = 2n

[
(q0 +m)pipf

(Ef +m)(Ei +m)
+ (q0 −m)

]
e+
i e

−
f

−2n

[
pf

Ef +m
+

pi

Ei +m

]
(k+
i e

−
f eiz + k−

f e
−
i ef z + qze

+
i e

−
f )

+λ2k+
f k

−
i

[
(q0 +m)pipf

(Ef +m)(Ei +m)
+ (q0 −m) +

qzpf

Ef +m
+
qzpi

Ei +m

]
ef zeiz.

(A.36)

After substituting (A.35) and (A.36) into (A.23) and integrating over qy, qz and q0, the
scattering amplitude (5) is derived.
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